Espaço Energia


Energias Renováveis


Diz-se que uma fonte de energia é renovável quando não é possível estabelecer um fim temporal para a sua utilização. É o caso do calor emitido pelo sol, da existência do vento, das marés ou dos cursos de água. As energias renováveis são virtualmente inesgotáveis, mas limitadas em termos da quantidade de energia que é possível extrair em cada momento.

As principais vantagens resultantes da sua utilização consistem no facto de não serem poluentes e poderem ser exploradas localmente. A utilização da maior parte das energias renováveis não conduz à emissão de gases com efeito de estufa. A única excepção é a biomassa, uma vez que há queima de resíduos orgânicos, para obter energia, o que origina dióxido de enxofre e óxidos de azoto.

A exploração local das energias renováveis contribui para reduzir a necessidade de importação de energia, ou seja, atenua a dependência energética relativamente aos países produtores de petróleo e gás natural.

As fontes de energia renováveis ainda são pouco utilizadas devido aos custos de instalação, à inexistência de tecnologias e redes de distribuição experimentadas e, em geral, ao desconhecimento e falta de sensibilização para o assunto por parte dos consumidores e dos municípios.

Ao ritmo que cresce o consumo dos combustíveis fósseis, e tendo em conta que se prevê um aumento ainda maior a curto/médio prazo, colocam-se dois importantes problemas: i) questões de ordem ambiental e ii) o facto dos recursos energéticos fósseis serem finitos, ou seja, esgotáveis. As fontes de energia renováveis surgem como uma alternativa ou complemento às convencionais. Num país como Portugal, que não dispõe de recursos energéticos fósseis, o aproveitamento das fontes de energia renováveis deveria ser um dos objectivos primordiais da política energética nacional.

ENERGIA SOLAR

Aproveitar a energia solar significa utilizá-la directamente para uma função, como seja aquecer um fluído (sistemas solares térmicos), promover a sua adequada utilização num edifício (sistemas solares passivos) ou produzir energia eléctrica (sistemas fotovoltaícos).

O nosso país é, a nível europeu, dos que tem mais horas de sol por ano: entre 2 200 a 3 000. Perante este cenário, seria natural que fôssemos, também um dos maiores consumidores de energia solar. No entanto, no nosso país existem cerca de 220 000 m2 de painéis solares instalados, o que é muito pouco comparativamente com a Grécia, que tem 2,6 milhões m2, e a mesma exposição solar.

O sol, não só é uma fonte de energia inesgotável, como permite obter uma energia limpa e gratuita (após a instalação das unidades de captação e armazenamento). Embora sejam necessários sistemas auxiliares, que não utilizam energia renovável, ao nível de poluição é muito reduzido. Por outro lado, os sistemas de aproveitamento de energia solar são os mais acessíveis, monetariamente, ao consumidor.

Sistemas Solares Térmicos

O aquecimento de um fluído, líquido ou gasoso, em colectores solares, é a utilização mais frequente da energia solar. O aquecimento de água por esta via é hoje uma tecnologia fiável e economicamente competitiva em muitas circunstâncias. No nosso país as aplicações mais correntes verificam-se no sector doméstico, para produção de águas quentes sanitárias e, em alguns casos, para aquecimento ambiente. Além do sector doméstico, existem também aplicações de grandes dimensões, nomeadamente em piscinas, recintos gimnodesportivos, hotéis e hospitais. Também o sector industrial é susceptível de utilizar sistemas solares térmicos, quer para as aplicações acima mencionadas, quer quando há necessidade de água quente de processo a baixa ou média temperatura.

Este tipo de sistemas capta, armazena e usa directamente a energia solar que neles incide. Os edifícios constituem um bom exemplo de sistemas solares passivos. Um edifício de habitação pode ser concebido e construído de tal forma que o seu conforto, a nível térmico, no Inverno e no Verão, seja mantido com recurso reduzido a energias convencionais (como a electricidade ou o gás), com importantes benefícios económicos e de habitabilidade. Para isso, existe um grande número de intervenções ao nível das tecnologias passivas, desde as mais elementares, como sejam o isolamento do edifício e uma orientação e exposição solar adequados às condições climáticas, a outras mais elaboradas, respeitantes à concepção do edifício e aos materiais utilizados. Em muitas dessas intervenções o sobrecusto relativamente a uma construção sem preocupações energéticas é mínimo. Em situações em que esse sobrecusto é maior, ele é facilmente recuperado em economia de energia e em ganhos de conforto.

Sistemas Fotovoltaícos

A energia solar pode ser directamente convertida em energia eléctrica por intermédio das células fotovoltaícas. As primeiras aplicações destes sistemas verificaram-se na alimentação permanente de energia a equipamentos instalados em satélites espaciais.

Em Portugal, temos já algumas aplicações interessantes da energia solar fotovoltaíca, nomeadamente no fornecimento das necessidades básicas de energia eléctrica a habitações distantes da rede pública de distribuição, na sinalização marítima (bóias e faróis), em passagens de nível ferroviárias e nas telecomunicações (retransmissores de televisão e sistemas de SOS instalados nas auto-estradas e estradas nacionais).

Actualmente, em Almada, já há também exemplos de aplicação da tecnologia solar fotovoltaíca:

  • sistema de sinalização de uma zona de atravessamento para peões, junto à Escola EB1 n.º 1 do Laranjeiro e
  • instalação de uma luminária no Parque da Paz. O objectivo destas acções, concretizadas pelo Município de Almada, passa por estudar o desempenho desta tecnologia, para posteriormente avaliar a sua possível extensão a outros locais do Concelho. [incluir fotos destas acções]

Refira-se que existem ainda outras aplicações em que a energia solar fotovoltaíca pode ser utilizada com benefício, como por exemplo na irrigação agrícola, onde há uma relação directa entre as necessidades de água e a disponibilidade de energia solar.

A integração de sistemas fotovoltaícos em edifícios, nas suas fachadas e telhados, para fornecimento de energia à rede eléctrica, são ainda outra possibilidade de aproveitamento da energia solar fotovoltaíca (por exemplo, em países como a Alemanha e a Holanda esta possibilidade é cada vez mais uma realidade).

ENERGIA EÓLICA

O vento tem origem nas diferenças de pressão causadas pelo aquecimento diferencial da superfície terrestre, sendo influenciado por efeitos locais, como a orografia e a rugosidade do solo

Há centenas de anos que a humanidade tenta utilizar a energia do vento. Pequenos moinhos têm servido para tarefas tão diversas como a moagem de cereais, bombear água e, mais recentemente, accionar turbinas para produzir electricidade.

Existem, basicamente, dois tipos de turbinas eólicas modernas:

  1. Os sistemas de eixo horizontal são os mais conhecidos. Consistem numa estrutura sólida elevada, tipo torre, com duas ou três pás aerodinâmicas que podem ser orientadas de acordo com a direcção do vento;
  2. Os sistemas de eixo vertical são menos comuns, mas apresentam a vantagem de captarem vento de qualquer direcção.

Apesar de não ser um dos países mais ventosos da Europa, Portugal tem condições bastante favoráveis ao aproveitamento da energia eólica do que, por exemplo, algumas zonas da Alemanha, onde os projectos se implementam a um ritmo impressionante. Os arquipélagos da Madeira e dos Açores constituem zonas de território nacional onde o potencial eólico é muito elevado. Ainda que Portugal esteja já bem posicionado relativamente a outros países, e de as perspectivas actuais apontarem para um crescimento acentuado neste sector, está ainda muito aquém do seu potencial eólico. Este corresponde a mais de 3 500 MW quando, actualmente, apenas se encontram instalados cerca de 200 MW.

Os locais com regime de vento favorável encontram-se em montanhas e em zonas remotas. Daí que coincidam, em geral com zonas servidas por redes eléctricas antigas e com fraca capacidade, dificultando o escoamento da energia produzida. As soluções imediatas para o problema passam pela construção de linhas muito extensas, cujos custos tornam os projectos pouco atractivos.

De referir também, que existem implicações a nível ambiental que põem em causa a viabilização de alguns projectos, tais como o ruído, o impacto visual e a influência na avifauna.

Qualquer destes aspectos tem conhecido grandes desenvolvimentos. Quer seja através da condução de estudos sistemáticos que mostram serem exagerados os receios anunciados, quer através da consciencialização dos promotores para os cuidados a adoptar, mormente na fase de construção, quer ainda pelas inovações tecnológicas que vão sendo incorporadas (perfis aerodinâmicos ais evoluídos, novos conceitos de regulação, máquinas de maior potência permitindo reduzir o número de unidades a instalar, etc.), a evolução é, claramente, no sentido da crescente compatibilização ambiental da tecnologia. Pelas razões anteriormente referidas, em grande parte dos casos é exigido ao promotor de um parque eólico a realização de um estudo de incidências ambientais, cujo grau de profundidade depende da sensibilidade do local.

Além dos parques eólicos, os aerogeradores existentes em Portugal encontram-se em pequenos sistemas autónomos de produção de energia eléctrica. Estes estão, normalmente, integrados com sistemas fotovoltaícos para fornecer electricidade a habitações, a sistemas de telecomunicações e a sistemas de bombagem de água que se encontrem afastados da rede pública.

No Alentejo, no concelho de Ourique, foram electrificadas cinco aldeias, que contam com uma mini-rede de distribuição alimentada por um sistema autónomo de produção de energia eléctrica, o qual é composto por um pequeno grupo de aerogeradores, associado a uma pequena central de painéis fotovoltaícos. Esta rede abrange cerca de 60 habitações.

Uma outra possibilidade de aproveitamento da energia eólica consiste nos parques offshore, instalados ao largo da costa marítima, de modo a tirar partido dos ventos fortes que caracterizam esta zona. Infelizmente, embora Portugal tenha uma ampla costa marítima, não reúne as melhores condições para este tipo de parque eólico, já que o mar é muito profundo a poucos metros da costa, o que dificultaria a implementação dos parques.

BIOMASSA

Esta é uma designação genérica que engloba o aproveitamento energético da matéria orgânica, ou seja, dos resíduos provenientes da limpeza das florestas, da agricultura e dos combustíveis resultantes da sua transformação. A energia pode ser obtida através da combustão directa dos materiais ou duma transformação química ou biológica, de forma a aumentar o poder energético do biocombustível.

Existem vários aproveitamentos deste tipo de combustíveis, dos quais se salientam a combustão directa, o biogás, e os biocombustíveis:

Combustão Directa

A queima de resíduos florestais e agrícolas produz vapor de água. Este, por sua vez, é canalizado para uma turbina com o objectivo final de produzir electricidade (ex. Central térmica de Mortágua).

Biogás

O biogás é um gás combustível, constituído em média por 60% de metano e 40% de CO2, que é produzido através de um processo denominado digestão anaeróbia dos resíduos orgânicos, ou seja, pela utilização de bactérias capazes de decompor os resíduos sem ser necessária a presença de oxigénio. As áreas potenciais principais de produção de biogás são as do sector agro-pecuário, da indústria agro-alimentar, das ETAR municipais e dos resíduos sólidos urbanos (RSU) e a sua queima pode ser feita em pequenas instalações, para produzir energia eléctrica. Uma vantagem resultante da combustão do biogás é a possibilidade de eliminar o metano, que é um dos gases que contribui para o efeito de estufa.

Biocombustíveis

Englobam-se aqui os ésteres metílicos (biodiesel) e os alcoóis. Através da transformação de certos óleos vegetais, como o de girassol, colza, milho, palma ou amendoim obtém-se um biodiesel que pode ser misturado com o gasóleo e alimentar motores deste tipo. Outra fonte de matéria-prima é a recuperação dos óleos usados em frituras (restauração, cantinas), mediante uma recolha selectiva. Estes óleos podem ser facilmente transformados em biocombustível, tendo como vantagem acrescida a eliminação de uma fonte de poluição.

Nos casos mais comuns e nos projectos-piloto desenvolvidos em Portugal (por ex. autocarros em Évora e Lisboa) tem-se substituído 5% do gasóleo por estes ésteres, sem que os motores percam eficiência. Mas os estudos efectuados revelam que é possível substituir até cerca de 30% o gasóleo. O mesmo tipo de substituição pode ser efectuado na gasolina, mas em menor escala (apenas 5% a 10%) e usando alcoóis em vez de ésteres.

Actualmente, o custo final do litro de biodiesel é muito elevado porque:

  • a produção nacional de girassol e de colza não é suficiente;
  • a produtividade agrícola é muito baixa, devido aos processos de cultivo e ao tipo de solos;
  • o custo da recolha e do transporte da matéria-prima é elevado; etc.

ENERGIA GEOTÉRMICA

Caracteriza-se por ser a energia térmica proveniente do interior da Terra. Os vulcões, as fontes termais e as fumarolas (por ex. nos Açores) são manifestações conhecidas desta fonte de energia. Actualmente, é utilizada em estações termais para fins medicinais e de lazer, mas também pode ser utilizada no aquecimento ambiente e de águas sanitárias, bem como, estufas e instalações industriais.

Numa central de energia geotérmica, tira-se partido do calor existente nas camadas interiores da Terra, para produzir o vapor que vai accionar a turbina. Na prática, são criados canais suficientemente profundos para aproveitar o aumento da temperatura, e injecta-se-lhes água. Esta, por sua vez, transforma-se em vapor (que é submetido a um processo de purificação antes de ser utilizado) e volta à superfície, onde é canalizada para a turbina.

Em Portugal, existem alguns exemplos de aproveitamento deste tipo de energia. É o caso da central geotérmica da Ribeira Grande, no arquipélago dos Açores, que produz energia eléctrica com potencial para garantir, na sua fase final, o fornecimento de 50 a 60% das necessidades de energia eléctrica da ilha de São Miguel (actualmente já assegura cerca de 29%).

As principais vantagens desta fonte de energia são o facto de não ser poluente e das centrais não necessitarem de muito espaço, de forma que o impacto ambiental é bastante reduzido. Ainda que apresente também alguns inconvenientes, como por exemplo, o facto de não existirem muitos locais onde seja viável a instalação de uma central geotérmica, dado que é necessário um determinado tipo de solo, bem como a disponibilidade de temperatura elevada no local até onde seja possível perfurar; ao perfurar as camadas mais profundas, é possível que sejam libertados gases e minerais perigosos, o que pode pôr em causa a segurança das pessoas que vivem e trabalham perto desse local.

ENERGIA HÍDRICA

O aproveitamento dos cursos de água, para a produção de energia eléctrica, é o melhor exemplo de sucesso de utilização de energias renováveis em Portugal.

No decorrer do século XX, a produção de hidroelectricidade foi efectuada principalmente através da construção de barragens de grande ou média capacidade. O princípio de funcionamento destas centrais é muito simples. Consiste em converter a energia mecânica existente num curso de água, como um rio, em energia eléctrica, que pode ser transportada em grandes distâncias e finalmente usada em nossas casas. Para aumentar o potencial do curso de água, constroem-se barragens, cujo propósito é reter a maior quantidade de água possível e criar um desnível acentuado.

Recentemente, a energia da água em sido aproveitada por mini ou micro hídricas. Estas são pequenos açudes ou barragens, que desviam uma parte do caudal do rio devolvendo-o num local desnivelado (onde estão instaladas turbinas), e produzindo, assim, electricidade.

Actualmente, uma parte significativa da energia eléctrica consumida em Portugal tem origem hídrica. No entanto, é preciso não esquecer que a produção deste tipo de energia está directamente dependente da chuva. Quando a precipitação é mais abundante, a contribuição destas centrais atinge os 40%. Pelo contrário, nos anos mais secos, apenas 20% da energia total consumida provém dos recursos hídricos.

ENERGIA DOS OCEANOS

O potencial de energia das marés e das ondas aguarda por avanços técnicos e tecnológicos que permitam uma maior aplicação. Ambas podem ser convertidas em energia eléctrica, usando diferentes tecnologias.

As zonas costeiras portuguesas (em especial a costa ocidental do continente e as ilhas dos Açores) têm condições naturais muito favoráveis para o aproveitamento da energia das ondas. Infelizmente, as tecnologias de conversão desta energia estão ainda em fase de desenvolvimento. Apesar deste facto, Portugal é um dos países pioneiros, com duas centrais de aproveitamento da energia das ondas, uma delas na ilha do Pico (junto à costa) e a outra em Castelo de Neiva (no mar).

Numa central de aproveitamento da energia das ondas, tira-se partido do movimento oscilatório das mesmas. Tal é conseguido criando câmaras ou colunas em zonas costeiras. Essas câmaras estão, parcialmente, cheias de água, e têm um canal aberto para o exterior por onde entra e sai ar. Quando a onda se aproxima, a água que está dentro da câmara sobe, empurrando o ar para fora, através do canal. Quando a onda desce, dá-se o movimento contrário. No canal de comunicação de entrada e saída do ar existe uma turbina que se move, consoante o movimento do ar na câmara. Tal como nos outros casos, a turbina está ligada ao gerador eléctrico, produzindo electricidade.

Outra forma de aproveitar a energia dos oceanos é tirando partido do movimento constante das marés. As centrais de aproveitamento da energia das marés funcionam de forma semelhante às barragens hidroeléctricas. De tal forma, que implicam a construção de grandes barragens, atravessando um rio ou um estuário. Quando a maré entra ou sai da foz do rio, a água passa através de túneis aberto na barragem. As turbinas, colocadas nesses túneis, movimentam-se consoante as idas e vindas das marés. Refira-se que, ao largo de Viana do Castelo, existe uma barragem que aproveita a energia das marés.

No entanto, saliente-se que a implementação de ambas as centrais é bastante complicada. No caso do aproveitamento da energia das ondas, é necessário escolher locais onde estas sejam continuamente altas, o que significa que a central de suportar condições adversas e muito rigorosas. No caso das marés, as barragens também têm de ser bastante resistentes. Além de que, ocuparão uma área maior do que no caso das ondas, o que tem implicações ambientais associadas, por exemplo, à renovação dos leitos dos rios.